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Abstract

In this paper we study local isometric immersionsf : Mn
s (K) → N2n−1

s+q (c) of a time-like
n-submanifoldMn

s (K) with constant sectional curvatureK and indexs into a pseudo-Riemannian
space formN2n−1

s+q (c)with constant sectional curvaturec and indexs+q, whereq ≥ 0, 1≤ s ≤ n−1
andK �= c. We first prove the existence of Chebyshev coordinates of a time-like submanifoldMn

s (K)

in certain conditions. Afterwards, we generalize the classical Bäcklund theorem for space-like (or
time-like) submanifolds inN2n−1

n−1 (c) andN2n−1
1 (c). Finally as an application, in the Chebyshev

coordinates, we use the Bäcklund theorem to give a Bäcklund transformation and a permutability
formula between the generalized sine-Laplace equation and the generalized sinh-Laplace equation.
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1. Introduction

The classical Bäcklund theorem[2,3] studies the transformation of surfaces with con-
stant negative curvature in Euclidean spaceE3 by realizing them as the focal surfaces of a
pseudo-spherical line congruence. The integrability theorem says that one can construct a
new surface inE3 with constant negative curvature from a given one by using the Bäcklund
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transformation (BT). With the development of integrable theory, BT has become an impor-
tant method to find new solutions of partial differential equations. At the same time, many
authors have presented some generalizations of geometric Bäcklund theorem. In[3], Chern
and Terng introduced W-congruence and discussed BT between affine minimal surfaces
in affine geometry. In[4–6], Tenenblat and Terng considered the generalization in higher
dimensional space formsN2n−1(c) and obtained the generalized sine-Gordon and wave
equation. On the other hand, the pseudo-Riemannian geometry has been a subject of wide
interest[7]. In Lorentzian space formsN3

1(c), the generalization was considered in[8–14].
Note that the natural generalization of BT is closely related to local isometric immersions

in (pseudo-Riemannian) space forms, which is a classical problem of differential geometry.
Cartan showed that ann-dimensional hyperbolic space form can be locally immersed in
E2n−1 and the dimension 2n − 1 cannot be lowered[1,17]. It is a classical result due to
Hilbert [18] that there are no complete isometric immersionsM2(K) → N3(c) if K < c and
K < 0, but it is yet unknown (though conjectured) whether this result extends to complete
isometric immersionsMn(K) → N2n−1(c) for K < c andK < 0. Notice that for the case
K = 0, one always has the clifford tori, andK > 0 cannot occur due to the fact that such
immersions induce global Chebyshev coordinates[19,20]. In contrast, whenK > c, one
always has the totally umbilical hypersurfaces. Especially, if the immersion has no umbilic
points, then the normal bundle is flat[19]. For pseudo-Riemannian space forms, there are
some similar results[23,24]. For instance, in[23] the solution of the generalized equation
has been shown to correspond to Riemannian submanifoldsMn(K) with constant sectional
curvature in pseudo-Riemannian space formsN2n−1

q (c) of indexq, withK �= c, flat normal
bundle, and the principal normal curvatures are different fromK − c. In [24] (or see[25]),
Borisenko has proved ifHn

s (−1) is a complete connected pseudo-Riemannian manifold
with constant negative curvature ands �= 0,1,3,7, then the manifoldHn

s (−1) cannot be
isometrically immersed intoE2n−1

s .
The aim of this paper is to study local isometric immersionsf : Mn

s (K) → N2n−1
s+q (c)

of a time-liken-submanifoldMn
s (K) with constant sectional curvatureK into a pseudo-

Riemannian space formN2n−1
s+q (c) of indexs+q, whereK �= c. In order to avoid degenerate

cases we shall make the following assumptions on isometric immersionsf : Mn
s (K) →

N2n−1
s+q (c):

(1) the second fundamental form off is orthogonally diagonalizable; and
(2) there exists a pointp ofM where principal normal curvatures are different fromK−c.

Based on the above assumptions, we obtain a correspondence (Theorem 3.2) between iso-
metric immersionsf : Mn

s (K) → N2n−1
s+q (c)(K �= c) and solutions of the generalized

system are

εi(fij )xi + εj(fji )xj +
n∑

k=1

εkfkifkj = −Kanianj if i �= j,

(fij )xk = fikfkj if i, j, k are distinct, (aij )xk = aikfkj if j �= k,

AJAt = J, A = (aij ), J = diag(J11, . . . , Jnn). (1.1)

WhenK > c, (1.1) is the generalized homogenous wave equation forK = 0, and the
generalized sinh-Gordon equation forK �= 0. WhenK < c, (1.1)is the generalized Laplace
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equation forK = 0, and the generalized sine-Laplace (GSL) equation forK �= 0. In fact,
whenq = 0 andK < c, the above assumptions (1) and (2) are needless (Theorem 3.3). By
using the correspondence between isometric immersions and the system(1.1), we give the
higher dimensional generalizations of the classical Bäcklund theorem inR2n−1

n−1 andR2n−1
1 .

As an application, by introducing the Chebyshev coordinates, we use the Bäcklund theorem
to give an explicit BT and a permutability formula between the generalized sine-Laplace
equation and the generalized sinh-Laplace equation (GSHL,Theorems 4.7 and 4.10).

2. Moving frames for time-like submanifolds in N2n−1
s+q (c)

Let N2n−1
s+q (c) be a(2n − 1)-dimensional pseudo-Riemannian space forms with index

s + q and constant sectional curvaturec. We take{eA|A = 1,2, . . . ,2n − 1} the local
pseudo-orthogonal frame ofN2n−1

s+q (c), such that

〈eA, eB〉 = εAδ
A
B, (2.1)

whereεA = 1(1 ≤ A ≤ n − s orn + 1 ≤ A ≤ 2n − q − 1) andεA = −1(n − s + 1 ≤
A ≤ nor 2n − q ≤ A ≤ 2n − 1). In this section, we use the following index conventions
unless otherwise stated:

1 ≤ i, j, k ≤ n; n+ 1 ≤ α, β, γ ≤ 2n− 1; 1 ≤ A,B,C ≤ 2n− 1. (2.2)

Let f : Mn
s → N2n−1

s+q (c) be an immersed time-like submanifold of indexs. One may
choose a local pseudo-orthonormal frame{f ; eA} defined on an open domainV of M such
that{ei} are tangent and{eα} are normal toM, respectively. Let{ωA} be the dual coframe
of {eA} defined byωA(eB) = δAB . Then one can write

df =
∑
A

ωAeA, 〈eA, eB〉 = εAδ
B
A. (2.3)

It is well known that there exist connection 1-forms{ωBA} such that structural equations of
N2n−1
s+q (c) are given by

dωA =
∑
B

ωB ∧ ωAB, dωBA =
∑
C

ωCA ∧ ωBC − cεAω
A ∧ ωB, (2.4)

whereεAωBA + εBω
A
B = 0. Restricting these forms toM, one has

ωα = 0, dωα =
∑
i

ωi ∧ ωαi . (2.5)

By Cartan’s lemma, one may set

ωαi =
∑
j

hαijω
j, hαij = hαji . (2.6)

The first equation of(2.4)gives

dωi =
∑
j

ωj ∧ ωij, εiω
j
i + εjω

i
j = 0, (2.7)

where(ωji ) is the connection onM and uniquely determined by these equations.
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The Gauss–Codazzi–Ricci equations are

dωji =
∑
k

ωki ∧ ω
j

k +Ω
j
i , (2.8)

dωαi =
∑
A

ωAi ∧ ωαA, (2.9)

dωβα =
∑
γ

ω
γ
α ∧ ωβγ +Ωβ

α, (2.10)

whereΩj
i = ∑

α ω
α
i ∧ ω

j
α − cεiω

i ∧ ωj are the curvature tensors andΩβ
α = ∑

k ω
k
α ∧ ω

β

k

are the normal curvature tensors.M is said to have a constant curvatureK if and only if
Ω
j
i = −εiKωi ∧ ωj.
The two fundamental forms ofM are

I = 〈df,df 〉 =
∑
i

εi(ω
i)2, II = −

∑
α

〈df,deα〉eα =
∑
i,α

εαω
α
i ω

ieα. (2.11)

Let ∇⊥ be an induced connection of the normal bundleϑ(M) of M, that is∇⊥eα = ω
β
αeβ.

A vector fieldη ∈ ϑ(M) is parallel if∇⊥η = 0. The normal bundleϑ(M) is flat if ∇⊥ is
flat, that is,Ωβ

α = 0. If the normal bundle is flat, one may choose a local orthonormal frame
field {eα} for the normal bundle such thatωβα = 0. If there exists a pseudo-orthogonal basis
{ei} such thathαij = 0 for all α when i �= j, we call the second fundamental form to be
orthogonally diagonalizable. Givenζ ∈ ϑ(M), one may define the shape operator by

〈Aζ(ei), ej〉 = εj〈II (ei, ej), ζ〉, (2.12)

that is to say,Aeα(ei) = ∑
j h

α
ij ej. If rank{Aζ|ζ ∈ ϑ(M)} = dimM, the normal bundle is

called non-degenerate. Obviously when the second fundamental form of the immersion is
orthogonally diagonalizable, then the normal bundle must be flat. But conversely it is not
true in general, the main reason is the family{Aζ|ζ ∈ ϑ(M)} of shape operators ofM atp
is not a family of commuting self-adjoint operators onTpM, hence generically there isn’t
a smooth common eigenframe.

If the second fundamental form ofM is orthogonally diagonalizable, one can write

B(ej, ej) =
∑
α

ωαj (ej)eα =
∑
α

hαjj eα.

It follows from the Gaussequations (2.8)that

〈B(ei, ei), B(ej, ej)〉 =
n−1∑
l=1

εn+lhn+lii hn+ljj = εiεj(K − c), i �= j. (2.13)

In this case the vectors{ei} are the principal directions ofM, and the corresponding principal
normal curvatures ofM are given by

〈B(ei, ei), B(ei, ei)〉 =
n−1∑
l=1

εn+l(hn+lii )2. (2.14)
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3. Isometric immersions of pseudo-Riemannian space forms

In the rest of this paper we suppose thatM is of constant curvatureK andK �= c.
To obtain the corresponding Gauss–Codazzi–Ricci equations having specially nice forms,
in the following we consider the existence of Chebyshev coordinates. Firstly, we give a
theorem due to[23], which gives the existence of Chebyshev coordinates of constant curved
space-like submanifolds inN2n−1

q (c) with q �= 0 (whenq = 0, the result is obtained in
[1,17,19,21], with some different conditions).

Theorem 3.1 (Barbosa et al.[23]). Let f : Mn(K) → N2n−1
q (c) be a local isometric

space-like immersion, where0 ≤ q ≤ n−1.Assume that the normal bundle is flat and there
exists a point p of M where the principal normal curvatures are different fromK− c. Then
on an open contractible region U of p, there exist line of curvature coordinates{x1, . . . , xn}
such that the first and second fundamental forms are

I =
n∑
i=1

a2
1i dx

2
i , II =

√
|K − c|

n∑
i=2,j=1

Jiiaija1j dx2
i en+i−1, (3.1)

where{eα} are local parallel normal frame fields. The Gauss–Codazzi–Ricci equations of
M are

(fij )xi + (fji )xj +
n∑

k=1

fkifkj = −Ka1ia1j if i �= j,

(fij )xk = fikfkj if i, j, k are distinct, (aij )xk = aikfkj if j �= k,

AJAt = J, A = (aij ), J = diag(J11, . . . , Jnn), (3.2)

where

Jll =
{

1 1 ≤ l ≤ n− q,

−1 n− q + 1 ≤ l ≤ n,

whenK < c, and

Jll =
{−1 1 ≤ l ≤ q + 1,

1 q + 2 ≤ l ≤ n,

whenK > c.
Conversely, if A = (aij ) is a solution of(3.2) defined on a simply connected domain

M such thata1i(1 ≤ i ≤ n) does not vanish. Then there exists a space-like immersion
f : Mn → N2n−1

q (c) which is unique to a rigid motion ofN2n−1
q (c) such that the two

fundamental forms are given by(3.1).

WhenM is a time-like constant curved submanifold, we use exactly the similar steps and
arguments used in Refs.[23,26] to obtain the following result.

Theorem 3.2. Let f : Mn
s (K) → N2n−1

s+q (c) be a local isometric immersion, where
q ≥ 0 and 1 ≤ s ≤ n − 1. Assume that the second fundamental form is orthogonally
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diagonalizable and there exists a point p of M where the principal normal curvatures
are different fromK − c. Then on an open contractible region U of p, there exist line
of curvature coordinates{x1, . . . , xn} such that the first and second fundamental forms
are

I =
n∑
i=1

εia
2
ni dx

2
i , II = −

√
|K − c|

n∑
i=1

n−1∑
l=1

Jll εianiali dx2
i en+l, (3.3)

where{eα} are local parallel normal frame fields. The Gauss–Codazzi–Ricci equations of
M are

εi(fij )xi + εj(fji )xj +
n∑

k=1

εkfkifkj = −Kanianj, if i �= j,

(fij )xk = fikfkj if i, j, k are distinct, (aij )xk = aikfkj if j �= k,

AJAt = J, A = (aij ), J = diag(J11, . . . , Jnn), (3.4)

whereJnn = 1, andJll = εn+l whenK < c and−εn+l whenK > c.
Conversely, if A = (aij ) is a solution of(3.4) defined on a simply connected domain

M such thatani (1 ≤ i ≤ n) does not vanish. Then there exists a time-like immersion
f : Mn

s → N2n−1
s+q (c) which is unique to a rigid motion ofN2n−1

s+q (c) such that the two
fundamental forms are given by(3.3).

Proof. Since the second fundamental form is orthogonally diagonalizable, there exist local
parallel normal frame fields{eα} and{ei} ∈ TpM such thatωβα = 0 andhαij = 0 (i �= j). It
follows from the hypothesis that there is an open subsetV of M such that, at each point of
V , the principal normal curvatures are different fromK − c. Hence one may define some
functionsaij onV by:

ani =
√

λi(K − c)

〈B(ei, ei), B(ei, ei)〉 −K + c
, ali = − εianih

n+l
ii√|K − c| , (3.5)

whereλi = ±1 is chosen so that the right-hand side is positive. From(3.5), one has

d
1

ani
= εiani

∑n−1
l=1 hn+lii dhn+lii

K − c
. (3.6)

It follows from the Codazziequations (2.9)that

dhn+lii ∧ ωi + hn+lii dωi =
n∑

j=1

hn+ljj ω
j
i ∧ ωj. (3.7)
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By using(2.13), (3.6) and (3.7), one obtains

d
ωi

ani
= λiani

(
dωi +

∑n−1
l=1

∑n
j=1 εn+lh

n+l
ii hn+ljj ω

j
i ∧ ωj

K − c

)
= λiani(dω

i − ωj ∧ ωij) = 0 (3.8)

for all 1 ≤ i ≤ n. Hence on an open contractible regionU of V , there exist smooth real
valued functions{x1, . . . , xn} such that

ωi = εiani dxi, 1 ≤ i ≤ n. (3.9)

By using(2.5), one gets

ω
j
i = −fji dxi + εiεjfij dxj, fij = (anj)xi

ani
, ωn+li = −ali

√
|K − c| dxi. (3.10)

Substituting (3.9) and (3.10) into (2.8)–(2.10), one has the Gauss–Codazzi–Ricci
equations (3.4). Substituting(3.5) into (2.13), one gets

∑n
k=1 Jkkakiakj = 0 (i �= j) which

impliesAtJA is a diagonal matrix. In the following one only need to proveAJAt = J .
Let W = ϑpM ⊕ R, whereϑpM is the normal bundle ofM at p. Consider the inner

product

〈〈(x, s), (y, t)〉〉 = 〈x, y〉 − (K − c)st, x, y ∈ ϑpM. (3.11)

SinceK �= c, 〈〈, 〉〉 is a pseudo-Riemannian product which has indexq (resp.q+1) if K < c

(resp.K > c). Define a mapβ : TpM × TpM → W by β(x, y) = (B(x, y), 〈x, y〉), where
x, y ∈ TpM. Using(2.13), it is easily verified that〈〈β(x, y), β(w, z)〉〉 = 〈〈β(x,w), β(y, z)〉〉
which implies that, according to the terminology of[19], β is a flat bilinear form with
respect to〈〈, 〉〉, wherex, y,w, z ∈ TpM. By a direct calculation, one may know that
{(ani/

√|K − c|)β(ei, ei)} is a pseudo-orthonormal basis forW . Hence one can reorder{ei}
such that

a2
ni

|K − c| (〈B(ei, ei), B(ei, ei)〉 −K + c)

{
Jii if K < c,

−Jii if K > c.
(3.12)

It follows from (3.5) thatAJAt = J .
The converse follows from the fundamental theorem of pseudo-Riemannian geometry

[7]. This completes the proof of the theorem. �

In the case ofK < c andq = 0, we can prove that the second fundamental form ofM is
necessarily orthogonally diagonalizable.

Theorem 3.3. Let f : Mn
s (K) → N2n−1

s (c) be a local isometric immersion andK < c.
Then

(1) the normal bundle is flat; and
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(2) on an open contractible region U of p, there exist line of curvature coordinates{x1, . . . , xn}
such that the first and second fundamental forms are

I =
n∑
i=1

εia
2
ni dx

2
i , II = −√

c −K

n∑
i=1

n−1∑
l=1

εianiali dx2
i en+l, (3.13)

where{eα} are local parallel normal frame fields. The Gauss–Codazzi–Ricci equations
of M are

εi(fij )xi + εj(fji )xj +
n∑

k=1

εkfkifkj = −Kanianj if i �= j,

(fij )xk = fikfkj if i, j, k are distinct, (aij )xk = aikfkj, if j �= k,

AAt = In. (3.14)

Proof. LetW = ϑpM⊕R, whereϑpM is the normal bundle ofM atp. Consider the inner
product

〈〈(x, s), (y, t)〉〉 = 〈x, y〉 − (K − c)st, x, y ∈ ϑpM. (3.15)

Define a mapβ : TpM × TpM → W by β(x, y) = (B(x, y), 〈x, y〉), wherex, y ∈ TpM.
By using(2.13), it is easily verified that〈〈β(x, y), β(w, z)〉〉 = 〈〈β(x,w), β(y, z)〉〉 which
implies thatβ is a Euclidean flat bilinear form with respect to〈〈, 〉〉, wherex, y,w, z ∈ TpM.
SinceK < c and the normal bundle is space-like,〈〈, 〉〉 is a Riemannian product. By using
Theorem 2(a) in[19], one may choose a pseudo-orthonormal basis{ei} ∈ TpM which
diagonalizesβ. Hence the second fundamental form is orthogonally diagonalizable, that is,
B(ei, ej) = 0 (i �= j). Then we havehαij = 0 (i �= j), andωβα = 0 which implies the normal
bundle is flat. Note that the normal bundle is space-like, then(2.13)becomes

2n−1∑
α=n+1

hαiih
α
jj = εiεj(K − c), i �= j. (3.16)

SinceK < c, one may define some functionsaij onV by:

ani =
√

c −K

〈B(ei, ei), B(ei, ei)〉 −K + c
, ali = −εianih

n+l
ii√

c −K
. (3.17)

Substituting(3.17)into (3.16), one gets
∑n

k=1 akiakj = 0 and
∑n

k=1 a
2
ki = 1 which imply

A ∈ O(n), i.e.,AAt = In. From(3.17), one has

d
1

ani
= ani

∑n−1
l=1 hn+lii dhn+lii

K − c
. (3.18)

It follows from the Codazziequations (2.9)that

dhn+lii ∧ ωi + hn+lii dωi =
n∑

j=1

hn+ljj ω
j
i ∧ ωj. (3.19)
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By using(3.16), (3.18) and (3.19), one obtains

d
ωi

ani
= ani

(
dωi +

∑n−1
l=1

∑n
j=1 h

n+l
ii hn+ljj ω

j
i ∧ ωj

K − c

)
= ani(dω

i − ωj ∧ ωij) = 0 (3.20)

for all 1 ≤ i ≤ n. Hence on an open contractible regionU of V , there exist smooth real
valued functions{x1, . . . , xn} such that

ωi = εiani dxi, 1 ≤ i ≤ n. (3.21)

By using(2.5), one gets

ω
j
i = −fji dxi + εiεjfij dxj, fij = (anj)xi

ani
, ωn+li = −ali

√
c −K dxi.

(3.22)

Substituting (3.21) and (3.22)into (2.8)–(2.10), one has the Gauss–Codazzi–Ricci
equations (3.14). This completes the proof of the theorem. �

Analogous to the proof of the above theorem, we can obtain the following theorem which
has been obtained in[8] for the caseK > c andc = 0.

Theorem 3.4. Let f : Mn(K) → N2n−1
n−1 (c) be a local isometric immersion andK > c.

Then

(1) the normal bundle is flat; and
(2) on an open contractible region U of p, there exist line of curvature coordinates{x1, . . . , xn}

such that the first and second fundamental forms are

I =
n∑
i=1

a2
1i dx

2
i , II = −√

K − c

n∑
i=2,j=1

aija1j dx2
i en+i−1, (3.23)

where{eα} are local parallel normal frame fields. The Gauss–Codazzi–Ricci equations
of M are

(fij )xi + (fji )xj +
n∑

k=1

fkifkj = −Ka1ia1j if i �= j,

(fij )xk = fikfkj if i, j, k are distinct, (aij )xk = aikfkj if j �= k,

AAt = In, A = (aij ). (3.24)

Example 3.5(Milnor [15], Gu et al.[22] and Tenenblat[26]). Consider the casen = 2
andq = 1 in Theorem 3.1. WhenK < c, by choosing
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A =

 cosh
u

2
sinh

u

2

sinh
u

2
cosh

u

2

 ,

whereu is a differentiable function ofx1, x2, equation (3.2)reduces toux1x1 + ux2x2 =
−K sinhuwhich is the sinh-Laplace equation whenK �= 0, and the Laplace equation when
K = 0. WhenK > c, by choosing

A =

 cos
u

2
sin

u

2

− sin
u

2
cos

u

2

 ,

whereu is a differentiable function ofx1, x2, equation (3.2)reduces toux1x1 − ux2x2 =
−K sinu which is the sine-Gordon equation whenK �= 0, and the homogenous wave
equation whenK = 0.

Consider the casen = 2, q = 0 ands = 1 in Theorem 3.2. WhenK > c, by choosing

A =

 cosh
u

2
sinh

u

2

sinh
u

2
cosh

u

2

 ,

whereu is a differentiable function ofx1, x2, equation (3.4)reduces toux1x1 − ux2x2 =
−K sinhu which is the sinh-Gordon equation whenK �= 0, and the homogenous wave
equation whenK = 0. WhenK < c, by choosing

A =

 cos
u

2
sin

u

2

− sin
u

2
cos

u

2

 ,

whereu is a differentiable function ofx1, x2, equation (3.4)reduces toux1x1 + ux2x2 =
−K sinu which is the sine-Laplace equation whenK �= 0, and the Laplace equation when
K = 0.

Remark 3.6. Note that whenM is time-like inN3
1(c) with K = c + ρ2 > 0 (ρ ∈ R is a

constant) and imaginary principal curvatures[13–15], then there exists a local coordinate
system(x, y) such that

I = dx2 + 2 sinhαdx dy − dy2, II = 2ρ coshαdx dy (3.25)

andα satisfies the equationαxy+ (c+ ρ2) coshα = 0. This means the second fundamental
form is not orthogonally diagonalizable.

4. Bäcklund theorems inR2n−1
n−1 and R2n−1

1

It is well known that [8,14,22] there are three kind of line congruences inN3
1(c):

space-like, time-like and light-like. Note that the “line” means geodesic of target space
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N3
1(c). In general we do not consider the light-like line congruence. If there exist two focal

surfaces (space-like or time-like) such that line congruences are the common tangent lines
of two focal surfaces, we may separate line congruences into following cases:

(i) space-like line congruence between time-like surfaces and space-like surfaces;
(ii) space-like line congruence between space-like surfaces and space-like surfaces;

(iii) space-like line congruence between time-like surfaces and time-like surfaces;
(iv) time-like line congruence between time-like surfaces and time-like surfaces.

Furthermore, when line congruences are pseudo-spherical[16] (or [14]) line congruences
in N3

1(c), then two focal surfaces have the same constant Gaussian curvature. The natural
generalization would be to find a transformation theory for constant sectional curvature
space-like or time-like submanifolds in a suitable pseudo-Riemannian space forms. Now
we consider this question inN2n−1

n−1 (c) andN2n−1
1 (c). In this section we use the summation

conventions and the following index notations unless otherwise stated:

2 ≤ i, j, k ≤ n, n+ 1 ≤ α, β, γ ≤ 2n− 1, 1 ≤ A,B,C ≤ 2n− 1, εA = 〈eA, eA〉.
(4.1)

4.1. Bäcklund line congruences inR2n−1
n−1 andR2n−1

1

Definition 4.1. A line congruence between twon-dimensional (space-like or time-like)
submanifoldsM andM̃ in R2n−1

n−1 orR2n−1
1 is a diffeomorphismL : M → M̃ such that the

line joiningp ∈ M andp̃ = L(p) is a common tangent line forM andM̃.

In the following we assume that line congruences are not light-like. In general, for a line
congruenceL : M → M̃ between twon-dimensional submanifolds, the normal planes
Vp andṼp̃ at corresponding pointsp andp̃ are of dimensionn − 1 and both of them are

perpendicular to
−→
pp̃. Therefore,Vp andṼp̃ lie in a 2n−2 dimensional inner product space,

there aren− 1 angles betweenVp andṼp̃.

Definition 4.2. A line congruenceL : M → M̃ between twon-dimensional (space-like or
time-like) submanifoldsM andM̃ in R2n−1

n−1 orR2n−1
1 is called a Bäcklund line congruence

if there exist local pseudo-orthonormal frames{eA} and{ẽA} of M andM̃, respectively,
such that

(a) {eα} and{ẽα} are parallel normal frames forM andM̃, respectively;
(b) The distance betweenp andp̃ is a positive constantr, independent ofp;
(c) Then− 1 angles betweenVp andṼp̃ are the same and equal to a non-zero constantτ,

independent ofp.

In fact, the above Bäcklund line congruence could be separated into the following four
cases:

(1) anti-de Sitter line congruenceL1: space-like line congruence between a time-like sub-
manifoldMn

n−1 and a space-like submanifold̃Mn in R2n−1
n−1 ;
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(2) spherical line congruenceL2: space-like line congruence between a space-like subman-
ifold Mn and a space-like submanifold̃Mn in R2n−1

n−1 ;
(3) de Sitter line congruenceL3: space-like line congruence between a time-like subman-

ifold Mn
n−1 and a time-like submanifold̃Mn

n−1 in R2n−1
n−1 ;

(4) time-like de Sitter line congruenceL4: time-like line congruence between a time-like
submanifoldMn

1 and a time-like submanifold̃Mn
1 in R2n−1

1 .

4.2. Bäcklund theorems inR2n−1
n−1 andR2n−1

1

Theorem 4.3. Let M andM̃ be two n-dimensional submanifolds inR2n−1
n−1 or R2n−1

1 . Let

Li : M → M̃ (1 ≤ i ≤ 4) be one of the above Bäcklund congruences as inDefinition 4.2.
Then M andM̃ have the same constant sectional curvature K, whereK = − cosh2τ/r2 in
(1),K = sinh2τ/r2 in (2),K = sinh2τ/r2 in (3) andK = sin2τ/r2 in (4).

Proof.

Case 1.LetM andM̃ be a time-like submanifoldMn
n−1 and a space-like submanifold̃Mn

in R2n−1
n−1 , respectively, andf : M → R2n−1

n−1 andf̃ : M̃ → R2n−1
n−1 . LetL1 : M → M̃ be

an anti-de Sitter line congruence as in the above, then there exist local pseudo-orthonormal
frames{eA} and{ẽA} of M andM̃, respectively, such that{eα} and{ẽα} are parallel normal
frames forM andM̃ respectively, and for allx ∈ M,

f̃ = f + re1 (4.2)

and

(ẽ1, . . . , ẽ2n−1) = (e1, . . . , e2n−1)

 1 0 0

0 sinhτIn−1 coshτIn−1

0 coshτIn−1 sinhτIn−1

 , (4.3)

whereε1 = εα = −εi = 1. Since{eα} and{ẽα} are parallel normal frames forM andM̃
respectively, one has

ω
n+j−1
n+i−1 = ω̃

n+j−1
n+i−1 = 0. (4.4)

Take the exterior derivative of(4.2), one gets

df̃ = df + r de1 = ω1e1 + (ωi + rωi1)ei + rωn+i−1
1 en+i−1. (4.5)

On the other hand, letting{ω̃1, . . . , ω̃n} be the dual coframe of{ẽ1, . . . , ẽn}, one obtains

df̃ = ω̃1ẽ1 + ω̃iẽi = ω̃1e1 + sinhτω̃iei + coshτω̃ien+i−1. (4.6)

Comparing coefficients of{eA} in (4.5) and (4.6), one gets

ω̃1 = ω1, sinhτω̃i = ωi + rωi1, coshτω̃i = rωn+i−1
1 . (4.7)

This gives

ωi + rωi1 = r tanhτωn+i−1
1 . (4.8)
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Since〈dẽn+i−1, ẽn+j−1〉 = −ω̃n+j−1
n+i−1 = 0 andẽn+i−1 = coshτei + sinhτen+i−1, one has

ω
j
i = tanhτ(ωn+j−1

i − ω
j

n+i−1). (4.9)

By usingωn+j−1
n+i−1 = 0 and Ricci equations, one gets

ωkn+i−1 ∧ ω
n+j−1
k + ω1

n+i−1 ∧ ω
n+j−1
1 = 0. (4.10)

By using(4.8) and (4.9), one obtains

ω̃n+k−1
1 = −〈dẽ1, ẽn+k−1〉 = − coshτ

r
ωk, ω̃n+k−1

i = −〈dẽi, ẽn+k−1〉 = ωkn+i−1.

(4.11)

Hence one has

Ω̃
j

1 = ω̃n+k−1
1 ∧ ω̃

j

n+k−1 = − cosh2τ

r2
ω̃1 ∧ ω̃j,

Ω̃
j
i = ω̃n+k−1

i ∧ ω̃
j

n+k−1 = cosh2τ

r2
ω̃i ∧ ω̃j. (4.12)

This implies thatM̃ has a constant negative sectional curvature− cosh2τ/r2. By symmetry,
M has the same sectional curvature− cosh2τ/r2. This completes the proof ofCase 1.

Analogous toCase 1, we may prove the remaining cases. Here the corresponding pseudo-
orthonormal frames are as follows:

Case 2.For allx ∈ M in R2n−1
n−1 , L2(x) = x + re1(x) and

(ẽ1, . . . , ẽ2n−1) = (e1, . . . , e2n−1)

 1 0 0

0 coshτIn−1 sinhτIn−1

0 sinhτIn−1 coshτIn−1

 , (4.13)

whereε1 = εi = −εα = 1.

Case 3.For allx ∈ M in R2n−1
n−1 , L3(x) = x + re1(x) and

(ẽ1, . . . , ẽ2n−1) = (e1, . . . , e2n−1)

 1 0 0

0 coshτIn−1 sinhτIn−1

0 sinhτIn−1 coshτIn−1

 , (4.14)

whereε1 = εα = −εi = 1.

Case 4.For allx ∈ M in R2n−1
1 , L4(x) = x + ren(x) and

(ẽ1, . . . , ẽ2n−1) = (e1, . . . , e2n−1)

 cosτIn−1 0 sinτIn−1

0 1 0

− sinτIn−1 0 cosτIn−1

 , (4.15)

whereεα = −εn = 1 = εi for 1 ≤ i ≤ n− 1.
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Remark 4.4. In [8], Huang has obtained the BT between space-like submanifolds and
space-like submanifolds inR2n−1

n−1 . To keep BTs complete, we still list it here. By using
the higher generalizations of line congruences in[14], similarly we may generalize the
classical Bäcklund theorem for space-like (or time-like) submanifolds inN2n−1

n−1 (c) and

N2n−1
1 (c), wherec is 1 or−1. To keep this paper brief, we omit those tedious and similar

results.

Next we discuss the integrability theorem. If necessary we shall assume thatn-submani-
folds, which we consider, have the Chebyshev coordinates and flat non-degenerate normal
bundle.

Theorem 4.5. Suppose M is a time-like n-submanifold inR2n−1
n−1 with sectional curvature

− cosh2τ/r2, wherer > 0 and τ �= 0 are constants. Then given a space-like unit vector
v0 ∈ Tp0M, there exist a space-like n-submanifoldM̃ with the same sectional curvature
− cosh2τ/r2 in R2n−1

n−1 and an anti-de Sitter line congruenceL1 : M → M̃ such that
L1(p0) = p0 + rv0.

Proof. Let T be the idea generated by the following 1-forms:

αi = ωi + rωi1 − tanhτωn+i−1
1 , β

j
i = ω

j
i − tanhτ(ωn+j−1

i − ω
j

n+i−1),

γ
j
i = ω

n+j−1
n+i−1 . (4.16)

Notice that

dαi = dωi + r dωi1 − r tanhτ dωn+i−1
1

≡ −1

r
ω1 ∧ ωi+rΩi

1 + r tanhτωn+k−1
1 ∧ ωik − r tanh2τωn+k−1

1 ∧ ωn+i−1
k mod(T )

= −1

r
ω1 ∧ ωi + r

cosh2τ
Ωi

1 mod(T ) (4.17)

andΩi
1 = ( cosh2/r2)τω1 ∧ ωi, hence one has dαi ≡ 0 mod(T ), that is, dαi ∈ T . By a

similar calculation, we obtain dβji ∈ T . According toTheorem 3.3, the normal bundle of

M is flat, one may gets dγji ∈ T . HenceT is a closed differential idea, i.e., dT ⊆ T . Then
by the Frobenuis theorem, there exists a local pseudo-orthonormal frame field{eA} onM
nearp0 with e1(p0) = v0 and

ωi + rωi1 = r tanhτωn+i−1
1 , ω

j
i = tanhτ(ωn+j−1

i − ω
j

n+i−1),

ω
n+j−1
n+i−1 = 0. (4.18)

Suppose that nearp0,M is given by a time-like immersionf : D→ R2n−1
n−1 , whereD is an

open subset ofR2n−1
n−1 . Definef̃ = f + re1. Next, we shall prove that̃f defines a space-like

n-submanifold with constant sectional curvature− cosh2τ/r2 in R2n−1
n−1 , andL : M → M̃
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defines an anti-de Sitter line congruence as inDefinition 4.2. Taking the differential of̃f
and using(4.18), one gets

df̃ = df + r de1 = ω1e1 + r

coshτ
( sinhτei + coshτen+i−1)ω

n+i−1
1 . (4.19)

According toTheorem 3.3, one may choose lines of curvaturesx = {x1, . . . , xn} forM near
p0 with respect to the above normal frame field{eα} such thatv0

i = (1/a1i)(∂/∂xi)|p0, where
{a1i} for 1 ≤ i ≤ nare the coefficients of the first fundamental form. Letvi = (1/a1i)(∂/∂xi)

andθi (1 ≤ i ≤ n) be its dual co-frame. Setvn+j−1 = en+j−1 andθBA = εB〈dvA, vB〉 for

1 ≤ A, B ≤ 2n − 1. Then one hasθn+j−1
i = −εi(aji/a1i)θ

i. Supposee1 = ∑n
i=1 fivi,

wheree1(p0) = v0. Hence

ω1 =
n∑
i=1

εifiθ
i, ω

n+j−1
1 = −

n∑
i=1

εi
aji

a1i
fiθ

i. (4.20)

Let Bi = (a1i/ani, . . . , an−1,i/ani, εi) for 1 ≤ i ≤ n. It follows from A ∈ O(n) that
{B1, . . . , Bn} are mutually orthogonal. Hence{ω1, ωn+1

1 , . . . , ω2n−1
1 } are linearly inde-

pendent. This means thatf̃ has rankn and defines a space-liken-submanifold inR2n−1
n−1 .

By a similar calculation as in the above theorem, one easily knows thatM̃ is a space-like
n-submanifold with constant sectional curvature− cosh2τ/r2 in R2n−1

n−1 , andL : M → M̃

is the anti-de Sitter line congruenceL1 as inDefinition 4.2. �

Similar toCase 1, we also have the following integrability theorems to the other cases.

Theorem 4.6. Let r > 0 andτ �= 0 be two constants.

(i) If Mn (or Mn
n−1) is a space-like(or time-like) n-submanifold inR2n−1

n−1 with sectional
curvature sinh2τ/r2. Then given a space-like unit vectorv0 ∈ Tp0M, there exist a
space-like(or time-like) n-submanifoldM̃n (or M̃n

n−1) with the same sectional curvature

sinh2τ/r2 inR2n−1
n−1 and a spherical(or de Sitter) line congruenceL2 (orL3) : M → M̃

such thatL2(p0) (or L3(p0)) = p0 + rv0.
(ii) If M is a time-like n-submanifold inR2n−1

1 with sectional curvaturesin2τ/r2. Then
given a time-like unit vectorv0 ∈ Tp0M, there exist a time-like n-submanifold̃M
with the same sectional curvaturesin2τ/r2 in R2n−1

1 and a time-like de Sitter line
congruenceL0 : M → M̃ such thatL4(p0) = p0 + rv0.

4.3. Bäcklund transformations in the Chebyshev coordinate

In this section, we shall use the Bäcklund theorem and integrability theorem to derive
BTs and permutability formulas of the corresponding Gauss–Codazzi–Ricci equations. As
an example, we only considerCase 1and give a BT and a permutability formula between
the generalize sine-Laplace equation and the generalize sinh-Laplace equation. The other
cases are similar.

According to the proof ofTheorem 4.5, actually (4.18) is the BT between time-like
submanifolds and space-like submanifolds inR2n−1

n−1 . Next we give an explicit form in
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Chebyshev coordinates. For simplicity, we chooser = coshτ. Hence bothM andM̃ have
constant sectional curvature−1. To make notations clear, we first recall some results about
M andM̃. For M, since it is a time-liken-submanifold withK = −1, it follows from
Theorem 3.3that, on an open contractible regionU of p, there exist line of curvature
coordinates{x1, . . . , xn} such that the first and second fundamental forms are

I =
n∑
i=1

εia
2
1i dx

2
i , II = −

n∑
i=2,j=1

εjaija1j dx2
i en+i−1, (4.21)

where{eα} are local parallel normal frame fields. The Gauss–Codazzi–Ricci equations of
M are the generalized sine-Laplace equation:

εi(fij )xi + εj(fji )xj +
n∑

k=1

εkfkifkj = a1ia1j if i �= j,

(fij )xk = fikfkj if i, j, k are distinct, (aij )xk = aikfkj if j �= k,

A = (aij ) ∈ O(n). (4.22)

ForM̃, since it is a space-liken-submanifold withK̃ = −1 and if it satisfies the conditions
in Theorem 3.1, then on an open contractible regionU of p, there exist line of curvature
coordinates{x1, . . . , xn} such that the first and second fundamental forms are

Ĩ =
n∑
i=1

ã2
1i dx

2
i , ĨI = −

n∑
i=2,j=1

ãij ã1j dx2
i ẽn+i−1, (4.23)

where{ẽα} are local parallel normal frame fields. The Gauss–Codazzi–Ricci equations of
M̃ are the generalized sinh-Laplace equation:

(f̃ij )xi + (f̃ji )xj +
n∑

k=1

f̃kif̃kj = ã1iã1j if i �= j,

(f̃ij )xk = f̃ikf̃kj if i, j, k are distinct,

(ãij )xk = ãikf̃kj if j �= k, Ã = (ãij ) ∈ O(1, n− 1). (4.24)

Theorem 4.7. LetL1 : M → M̃ be an anti-de Sitter line congruence as inDefinition 4.2.
Then

(i) the Chebyshev coordinates of M andM̃ correspond underL1; and
(ii) the corresponding BT between the GSL equation(4.22)and the GSHL equation(4.24)

is

dÃ+ Ã(Fδ− JδFtJ) = ÃJδAtDJÃ− DAδ, (4.25)

whereF = (fij ) with fii = 0 for 1 ≤ i ≤ n, δ = diag(dx1, . . . ,dxn) andD =
diag(1/ coshτ, tanhτ, . . . , tanhτ).
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Proof. By using the same notations as in the proof ofTheorem 4.5. Determine an O(1, n−
1)-mapΓ = (χij ) by

ei =
n∑

j=1

χijvj, 1 ≤ i ≤ n. (4.26)

Firstly, we prove thatΓ = Ã. Notice that

ωi =
n∑

j=1

εiεjχij θ
j =

n∑
j=1

εiεjχija1j dxj,

ω
n+j−1
i = 〈dei, en+j−1〉 =

n∑
k=1

εkχikajk dxk, (4.27)

where 1≤ i ≤ n. By using(4.7), (4.11)andA ∈ O(n), one gets

Ĩ = (ω̃1)2 +
n∑

j=2

(ω̃j)2 = (ω1)2 +
n∑

j=2

(ω
n+j−1
1 )2

=
n∑

k,i=1

εiεkχ1kχ1ia1ka1i dxi dxk +
n∑

k,i=1

εiεkχ1kχ1i

n∑
j=2

ajkaji dxi dxk =
n∑

k=1

χ2
1k dx2

k,

〈ĨI , ẽn+k−1〉 =
n∑

j=1

ω̃jω̃n+k−1
j = −ω1ωk +

n∑
j=2

ω
n+j−1
1 ω

n+j−1
k

=
n∑

l,i=1

εiεlχ1lχkia1la1i dxi dxk +
n∑

l,i=1

εiεlχ1lχki

n∑
j=2

ajlaji dxi dxl

=
n∑
l=1

χ1lχkl dx
2
l . (4.28)

Then comparing(4.23) and (4.28), one knows that{x1, . . . , xn} are the Chebyshev coordi-
nates ofM̃ andÃ = Γ . Hence the Chebyshev coordinates ofM andM̃ correspond under
L1.

Next we compute the BT between the GSLequation (4.22)and the GSHLequation (4.24).
Note that whenr = coshτ, (4.18)becomes

ωi + coshτωi1 = sinhτωn+i−1
1 , ω

j
i = tanhτ(ωn+j−1

i − ω
j

n+i−1). (4.29)

WriteΩ = (ω
j
i ), D = diag(1/ coshτ, tanhτ, . . . , tanhτ) and

W =


ω1 ω1

n+1 · · · ω1
2n−1

...
...

. . .
...

ωn ωnn+1 · · · ωn2n−1

 .

Then(4.29)rewrites as

Ω = JWDJ− DWt . (4.30)



258 C. Qing et al. / Journal of Geometry and Physics 52 (2004) 241–262

WriteΘ = (θ
j
i ) and usingei = ∑n

j=1 ãijvj, one gets

Ω = ÃΘJÃtJ + dÃJÃtJ. (4.31)

Note thatΘ = Fδ − JδFtJ andW = JÃJδAt , whereF = (fij ), fii = 0 andδ =
diag(dx1, . . . ,dxn). It follows from (4.30) and (4.31)that one could obtain(4.25). This
completes the proof of the theorem. �

Remark 4.8. By analogy with the above discussion, one may obtain the BT between the
space-liken-submanifoldM̃ and the time-liken-submanifoldM. The corresponding BT
between the GSHLequation (4.24)and the GSLequation (4.24)is as follows

Ω̃ = dAA−1 + AΘ̃A−1 = W̃D −DW̃, Θ̃ = F̃ δ− δF̃ t, W̃ = AδÃt, (4.32)

where we callL−1
1 : M̃ → M to be an inverse anti-de Sitter line congruence.

Remark 4.9. Consider the casen = 2, we choose

A =

 cos
u

2
sin

u

2

− sin
u

2
cosh

u

2

 , Ã =

 cosh
ũ

2
sinh

ũ

2

sinh
ũ

2
cosh

ũ

2

 .

Then(4.25)gives the BT between the sine-Laplace equation@u = sinuand the sinh-Laplace
equation@ũ = sinhũ [8,11,16]:

1

2
(ux1 − ũx2) = − 1

coshτ
cos

u

2
sinh

ũ

2
− tanhτ sin

u

2
cosh

ũ

2
,

1

2
(ux2 + ũx1) = − 1

coshτ
sin

u

2
cosh

ũ

2
+ tanhτ cos

u

2
sinh

ũ

2
.

Finally we consider the generalization of Bianchi permutability theorem and give a per-
mutability formula.

Theorem 4.10. LetL1
1 : M0 → M1 andL2

1 : M0 → M2 be two anti-de Sitter line congru-
ences with anglesτ1, τ2 and distancescoshτ1, coshτ2, respectively, as inDefinition 4.2.
If τ1 �= τ2, then there exist a unique time-like n-submanifoldM3 in R2n−1

n−1 and two inverse

anti-de Sitter line congruences̃L
1
1 : M1 → M3, L̃

2
1 : M2 → M3 with anglesτ2, τ1 and

distancescoshτ2, coshτ1, respectively, such thatL̃
2
1 ◦ L2

1 = L̃1
1 ◦ L1

1. The corresponding
permutability formula is

A3A
−1
0 (D1 −D2A2A

−1
1 ) = D1A2A

−1
1 −D2, (4.33)

whereA0, A3 ∈ O(n),A1, A2 ∈ O(1, n−1)andDl = diag(1/ coshτl, tanhτl, . . . , tanhτl)
for l = 1,2.



C. Qing et al. / Journal of Geometry and Physics 52 (2004) 241–262 259

Proof. Firstly, suppose the existence ofM3, L̃
1
1 andL̃

2
1, we prove the uniqueness. Letp0 ∈

M0, thenp3 = L̃1
1(p1) = L̃2

1(p2). SinceLl1, (L̃
l

1)
−1 for l = 1,2 are anti-de Sitter, inverse

anti-de Sitter line congruences, one has−−→p0p1, −−→p1p3 ∈ Tp1M1 and−−→p0p2, −−→p2p3 ∈ Tp2M2.
Therefore,−−→p0p3 ∈ Tp1M1∩Tp2M2. Note thatτ1 �= τ2, Tp1M1 andTp2M2 are twon-planes
in general position inR2n−1

n−1 , so dimTp1M1 ∩ Tp2M2 = 1. HenceM3 is unique determined

byL1
1 andL2

1.

Secondly, we still suppose the existence ofM3, L̃
1
1 andL̃

2
1, we prove the permutability

formula(4.33). Let {v0
A} be the frame field ofM0, where{v0

i }ni=1 are the principal curvature
directions and{v0

α} are local parallel frame fields (seeTheorem 4.5or Theorem 4.7). Let
{eki , ẽik}ni=1 ∈ TpkMk and{vkα} ∈ ϑpk (M) (k = 0,1,2) such that

−−→p0p1 = coshτ1e
0
1, e1

1 = e0
1, e2

1 = ẽ0
1,

−−→p0p2 = coshτ2ẽ
0
1;

e1
i = sinhτ1e

0
i + coshτ1v

0
n+i−1, e2

i = sinhτ2ẽ
0
i + coshτ2v

0
n+i−1;

v1
n+i−1 = coshτ1e

0
i + sinhτ1v

0
n+i−1, v2

n+i−1 = coshτ2ẽ
0
i + sinhτ2v

0
n+i−1.

(4.34)

On the other hand,

−−→p1p3 = coshτ2ẽ
1
1,

−−→p2p3 = coshτ1ẽ
2
1;

v3
n+i−1 = coshτ2ẽ

1
i + sinhτ2v

1
n+i−1 = coshτ1ẽ

2
i + sinhτ1v

2
n+i−1. (4.35)

LetAk = (akij ) be the corresponding map associated toMk with respect to the normal frame

field {vkα} for k = 0,1,2,3 respectively, whereA0 ∈ O(n) andA1, A2 ∈ O(1, n−1). Then
one has

e0
i =

n∑
j=1

a1
ijv

0
j , ẽ0

i =
n∑

j=1

a2
ijv

0
j , 1 ≤ i ≤ n. (4.36)

Hence one gets

ẽ0
i =

n∑
j=1

Cij e
0
j , C = (Cij ) = A2A

−1
1 , 1 ≤ i ≤ n. (4.37)

Similarly,

ẽ1
i =

n∑
j=1

Xij e
1
j , ẽ2

i =
n∑

j=1

Xij e
2
j , X = A3A

−1
0 , 1 ≤ i ≤ n. (4.38)

By using−−→p0p1 + −−→p1p3 = −−→p0p2 + −−→p2p3, one obtains

coshτ1e
0
1 + coshτ2ẽ

1
1 = coshτ1ẽ

0
1 + coshτ2ẽ

2
1. (4.39)

Expanding(4.39)and comparing the coefficients, one has

e0
1 : coshτ1 +X11 coshτ2

= C11 coshτ2 +X11C11 coshτ1 + coshτ1 sinhτ2

n∑
k=2

X1kCk1,
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e0
j : coshτ2 sinhτ1X1j=C1j coshτ2 +X11C1j coshτ1+ coshτ1 sinhτ2

n∑
k=2

X1kCkj,

vn+j−1 : coshτ2 coshτ1X1j coshτ2 coshτ1X1j. (4.40)

Similarly, expanding(4.35)and comparing the coefficients, one gets that

e0
1 : coshτ2Xi1 − coshτ1C11Xi1 − coshτ1 sinhτ2

n∑
k=2

XikCk1 = sinhτ1 coshτ2Ci1,

e0
j : coshτ2 sinhτ1Xij − C1jXi1 coshτ1 − coshτ1 sinhτ2

n∑
k=2

XikCkj

= sinhτ1 coshτ2Cij − δij coshτ1 sinhτ2. (4.41)

Write (4.40) and (4.41)in matrix form, one obtains

X(D1 −D2C) = D1C −D2, Dl = diag

(
1

coshτl
, tanhτl, . . . , tanhτl

)
(4.42)

for l = 1,2. Notice thatX = A3A
−1
0 , hence(4.42)is (4.33). By a direct verification, one

hasX = (D1C −D2)(D1 −D2C)
−1 ∈ O(n), henceA3 ∈ O(n) (sinceA0 ∈ O(n)).

Finally we prove the existence, i.e., we need to prove thatÃ = A3 satisfies the BT(4.32)
for bothA = A1, τ = τ2 andA = A2, τ = τ1. By symmetry it suffices to provẽA = A3
satisfies the BT(4.32)for A = A1, τ = τ2.

Let {ωi(k)}ni=1 be the dual coframe of{e(k)i }ni=1, whereωB(k)A the corresponding fork =
0,1,2. By using(4.29), one has

ω1(1) = ω1(0), ωi(1) = ω
n+i−1(0)
1 , ω

j(1)
i = ω

j(0)
i , ω

n+i−1(1)
1 = −ωi(0),

ω
i(1)
1 = tanhτ1ω

i(0) + 1

coshτ1
ω
n+i−1(0)
1 , ω

n+j−1(1)
i = ω

j(0)
n+i−1. (4.43)

Then

W(1) = JWtJ, Ω(1) = Ω +Λ, Ω(1) = (ω
j(1)
i ),

Λ = (λij ), λij = 0 (2 ≤ i, j ≤ n),

λ1j =
(

1

coshτ1
− tanhτ1

)
ω
n+j−1(0)
1 +

(
1

coshτ1
+ tanhτ1

)
ωj(0),

λj1 = −
(

1

coshτ1
+ tanhτ1

)
ω
n+j−1(0)
1 +

(
1

coshτ1
− tanhτ1

)
ωj(0), (4.44)

where

W(1) =


ω1(1) ω

1(1)
n+1 · · · ω

1(1)
2n−1

...
...

. . .
...

ωn(1) ω
n(1)
n+1 · · · ω

n(1)
2n−1

 .
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It follows fromL1
1 : M0 → M1 thatΩ = JWD1J −D1W

t . By usingẽ0
i = ∑n

j=1Cij e
0
j and

L2
1 : M0 → M2, one gets

(Ω̃ =)dCC−1 + CΩC−1 = JW̃D2J −D2W̃
t, W̃ = JCJW, C = A2A

−1
1 ,

dC = CD1W
t − CJWJY−D2W

t. (4.45)

It follows from L̃
1
1 : M1 → M3 thatΩ(1) = W(1)D1−D1W

(1)t . By usingẽ1
i = ∑n

j=1Xij e
1
j ,

one knows that it suffices to prove

dXX−1 +XΩ(1)X−1 = XW(1)D2 −D2W
(1)tX−1, (4.46)

whereX = ZY−1, Z = D1C − D2 andY = D1 − D2C. Since(4.44), (4.46)is equivalent
that

H := dXX−1 +X(Ω +Λ)X−1 − XJWtJD2 +D2JWJX−1 = 0. (4.47)

In the following we prove(4.47). DifferentiatingX = ZY−1, one gets dXX−1 = (XD2 +
D1)dCZ−1. Substituting dC in (4.45)into the above, one obtains

dXX−1 = (XD2 +D1)C(−JWJX−1 +D1W
tZ−1)− (XD2 +D1)D2W

tZ−1

= (XD1 +D2)(−JWJX−1 +D1W
tZ−1)− (XD2 +D1)D2W

tZ−1

= −XD1JWJX−1 +X(D2
1 −D2

2)W
tZ−1 −D2JWJX−1. (4.48)

By using(4.48)andΩ = JWD1J −D1W
t , one has

X−1HZ= VY+ (D2
1 −D2

2)W
t −D1W

tY − JWtJD2Z

= [VD1 + (D2
1 −D2

2)W
t −D1W

tD1 + JWtJD2
2]

− [VD2 −D1W
tD2 + JWtJD2D1]C = 0 + 0 × C = 0, (4.49)

whereV = −D1JWJ+ JWD1J +Λ. This completes the proof of the theorem. �
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